Lignin Carbohydrate Complexes – Learning the Structure-Property Relation

<u>Matthias Stosiek</u>, Joakim Löfgren, Daryna Diment, Mijung Cho, Davide Rigo, Marie Alopaeus, Michael Hummel, Chunlin Xu, Mikhail Balakshin[†], Patrick Rinke

What is Lignin?

Biomass (birch wood)

Cellulose

Hemicellulose

Lignin:

- Aromatic polymer found in the cell walls of plants.
- Binds cellulose and hemicellulose together in woody plants.
 => high stiffness and resistance to rot

Why is Lignin interesting?

Pulping industry

<u>Lignin</u> Abundant underutilized biomaterial

Why is Lignin interesting?

Learning the Structure-Property relationship

- Lignin is chemically very complex. Can form Lignin Carbohydrate Complexes (LCC).
- Lack of chemical knowledge doesn't allow for prediction of LCC properties from structure.
 - -> structure-property relationship is essential for lignin tailored for specific applications.

With machine learning, we can deduce the structure-property relationship from experimental data!

Outline

- 1. Introduction Experiments
- 2. Structure-property relation

Experiments

- 1. LCC sample preparation: biorefineries
- 2. LCC structural characterisation: NMR spectroscopy
- 3. LCC property characterisation: Antioxidant Activity Radical Scavenging Index

AqSO Lignin biorefinery

• Highly-tunable, green, industrially scalable process.

Dmitry Tarasov et al., Green Chem., 2022, 24, 6639-6656

P. Schlee et al., ChemSusChem2023, e202300549

2D Heteronuclear Single Quantum Coherence (HSQC) NMR spectroscopy

Antioxidant Activity - Radical Scavenging Index (RSI)

- Antioxidants are very important as additives in organic substrates such as plastics, fibers, adhesives, oils, ...
- Very high antioxidant activity in Lignins has been reported, higher than standard commercial products.

Learning the structure-property relationship

property correlation

Learning the structure-property relationship

What machine learning model do we use?

We have 62 samples so far, for which both RSI and NMR has been measured.

• Allows us to predict properties from structure and quantify how important which feature is.

What machine learning model do we use?

We have 62 samples so far, for which both RSI and NMR has been measured.

- Allows us to predict properties from structure and quantify how important which feature is.
- NMR spectrum is too high-dimensional as input!

Example Spectrum

Integrated Regions

Integrated Regions

Property Prediction

Random Forest Regression

Decision tree

Survival of passengers on the Titanic

- In random forest regression, we build many decision trees and the model prediction is the average prediction of the all trees.
- Each decision tree is created with a subset of the data using only a subset of the features for each split.
- Random forests work quite well, when data is scarce.
- Feature importance analysis is possible.

RSI regression

Feature Importance Analysis

Integrated Regions - Feature Importance Filtered

Chemical Analysis

β-Ο-4

Other properties

Glass transition temperature Tg
Molecular weight Mw
Thermal degradation metrics
Surface Tension

Model Performance Tg

Important Sectors Tg

Conclusion

- Prediction of RSI (and other properties) from NMR spectra is possible.
- With a feature importance analysis, we can determine how much each structural group determines each property.
- In discussion with our experimental collaborators we are working on the chemical interpretation.

Thank you for your attention!