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What is Lignin?

Biomass (birch wood)

Cellulose Hemicellulose

Lignin:

« Aromatic polymer found
in the cell walls of
plants.

* Binds cellulose and
hemicellulose together
in woody plants.

=> high stiffness and
resistance to rot



Why is Lignin interesting?

Pulping industry

Cellulose Waste
Product

Lignin
Abundant underutilized
biomaterial
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Learning the Structure-Property relationship

» Lignin is chemically very complex. Can
form Lignin Carbohydrate
Complexes (LCC).

» Lack of chemical knowledge doesn't
allow for prediction of LCC properties
from structure.

-> structure-property relationship
is essential for lignin tailored for
specific applications.

With machine learning, we can
deduce the structure-property
relationship from experimental data!




Outline

1. Introduction - Experiments

2. Structure-property relation



Experiments

LCC sample preparation: biorefineries
LCC structural characterisation: NMR spectroscopy

3. LCC property characterisation: Antioxidant Activity — Radical
Scavenging Index



AgSO Lignin biorefinery

” l + Highly-tunable,
green, industrially
! scalable process.
Hydrolysate Dmitry Tarasov etal., Green Chem.,

2022,24, 6639-6656

(Carbohydrates, LCC
AcOH, Furfural) v ' / -
1 ChemSusChem?2023, e202300549

P. Schlee et al

EE




2D Heteronuclear Single Quantum Coherence (HSQC)
NMR spectroscopy
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Antioxidant Activity - Radical Scavenging Index (RSI)

Antioxidants are very important as additives in organic substrates such as plastics, fibers,
adhesives, oils, ...

Very high antioxidant activity in Lignins has been reported, higher than standard commercial
products.

1,1-diphenyl-2-picrylhydrazyl (DPPH)

U ‘ How much DPPH

s left in steady-state?

Lignin



Learning the structure-property relationship

Experimental Measured LCC
LCC Fingerprint

Data-driven methodology property of interest

—

Measured
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Establish structure-
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Learning the structure-proper

Experimental
LCC Fingerprint

Data-driven methodology

—

Measured
structure

Establish structure-
property correlation

e

Understand which kind
of LCC leads to optimal
properties

—

Measured
property

y relationship

Measured LCC
property of interest

Gain insight on the
underlying chemistry



55

What machine learning model do we use?

We have 62 samples so far, for which both RSl and NMR has been measured.
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« Allows us to predict properties from structure and quantify how important which feature is.
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« Allows us to predict properties from structure and quantify how important which feature is.

NMR spectrum is too high-dimensional as input!



Example Spectrum
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Integrated Regions
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Integrated Regions
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Property Prediction
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Random Forest Regression

Decision tree
Survival of passengers on the Titanic

* Inrandom forest regression, we build many
gender decision trees and the model predictionis

i the average prediction of the all trees.
_male female

e

e Each decision tree is created with a subset

survived .
iz 0.73: 36% of the data using only a subset of the
o T features for each split.
95<age age<=95
_// S .
oy .  Random forests work quite well, when data
0.17; 61% sibsp is scarce.
3 == sib/é sibsp < 3 . . . .
P g i =8 * Featureimportance analysisis possible.
died survived

0.02. 2% 0.89. 2%



predicted nRSI, mmol/g
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e training
e test

5.5 6.0 6.5 7.0 7.5 8.0 8.5
measured nRSI, mmol/g

. MAPE of trainingdatais 3.3%

and of test data is 6.7%.

*/ We get a meaningful

prediction from RF model!



Feature Importance Analysis
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Integrated Regions - Feature Importance Fi
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Chemical Analysis
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Other properties

1. Glass transition temperature Tg
2.Molecular weight Mw
3.Thermal degradation metrics
4.Surface Tension
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Conclusion

* Prediction of RSI (and other properties) from NMR spectra is possible.

* With a feature importance analysis, we can determine how much
each structural group determines each property.

* In discussion with our experimental collaborators we are working on
the chemical interpretation.



Thank you for your attention!
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