Symmetry-aware generative model for glassy motifs

Martin Uhrín, Anna Paulish

Computational Atomistic Methods and Machine Learning, SIMaP

Multidisciplinary Institute In Artificial Intelligence

Motivation

Timo Hakala, Kenneth Holmberg and Anssi Laukkanen. Lubricants. 9. 30. (2021). 2/ 21 Martin Uhrín, Anna Paulish

Symmetry-aware generative model for glassy motifs

Motivation

Given an example structure(s), can we teach a generative machine learning model to generate novel examples, bypassing the need for further molecular dynamics?

Timo Hakala, Kenneth Holmberg and Anssi Laukkanen. Lubricants. 9. 30. (2021).

2/21 Martin Uhrín, Anna Paulish Symmetry-aware generative model for glassy motifs

The Variational Autoencoder

The autoencoder

The Variational Autoencoder

The autoencoder

The variational autoencoder

 $\mathcal{L} = (x - \tilde{x})^2 + \sum_j KL(q_j(z|x)||p(z))$

The Variational Autoencoder

The autoencoder

The variational autoencoder

 $\mathcal{L} = (x - \tilde{x})^2 + \sum_j KL(q_j(z|x)||p(z))$

Kullback-Leibler divergence

Symmetry-aware representation of local atomic environments

V. L. Deringer et al., Journal of Physical Chemistry Letters 9, 2879–2885 (2018)

Direct representation

$$x = \begin{bmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ & \vdots \\ x_N & y_N & z_N \end{bmatrix}$$

Not a suitable input to a learning model. Consider

$$x' = xQ$$

where Q is a rotation matrix.

Symmetry-aware representation of local atomic environments

V. L. Deringer et al., Journal of Physical Chemistry Letters 9, 2879–2885 (2018)

Direct representation

	x_1	y_1	z_1
x =	x_2	y_2	z_2
		÷	
	x_N	y_N	z_N

Not a suitable input to a learning model. Consider

$$x' = xQ$$

where Q is a rotation matrix.

Symmetry-aware representation

 $G = \begin{bmatrix} x^{1} \cdot x^{1} & \cdots & x^{1} \cdot x^{N} \\ \vdots & \ddots & \vdots \\ x^{N} \cdot x^{1} & \cdots & x^{N} \cdot x^{N} \end{bmatrix} = \begin{bmatrix} \|x^{1}\|^{2} & \cdots & \|x^{1}\| \|x^{N}\| \cos \theta_{1N} \\ \vdots & \ddots & \vdots \\ \|x^{N}\| \|x^{1}\| \cos \theta_{N1} & \cdots & \|x^{N}\|^{2} \end{bmatrix}$

This representation is rotationally invariant.

$$\boldsymbol{G} = \boldsymbol{x}\boldsymbol{x}^T = (\boldsymbol{x}\boldsymbol{Q})(\boldsymbol{x}\boldsymbol{Q})^T = \boldsymbol{x}\boldsymbol{Q}\boldsymbol{Q}^T\boldsymbol{x}^T = \boldsymbol{x}\boldsymbol{I}\boldsymbol{x}^T$$

Variational autoencoder for atomic motifs

Training

() For each atom in unit cell, extract local atomic environment up to r_{cut} . Keeps closest n atoms

minimise $\mathcal{L} = (G - \tilde{G})^2 + \sum_j KL(q_j(z|G)||p(z))$

Variational autoencoder for atomic motifs

Training

() For each atom in unit cell, extract local atomic environment up to r_{cut} . Keeps closest n atoms

2 Calculate Gram matrix $x^i \cdot x^j$, keep upper triangular part, $j \ge i$

minimise $\mathcal{L} = (G - \tilde{G})^2 + \sum_j KL(q_j(z|G)||p(z))$

Variational autoencoder for atomic motifs

Training

() For each atom in unit cell, extract local atomic environment up to r_{cut} . Keeps closest n atoms

@ Calculate Gram matrix $x^i \cdot x^j$, keep upper triangular part, $j \ge i$

0 Generate permutation copies of atom labels *i* (data augmentation) e.g. [1, 2, 3], [1, 3, 2], [2, 1, 3], etc

$$G q_{\theta}(z|G) \frac{\mu}{\sigma} z p_{\theta}(G|z) \tilde{G}$$

minimise $\mathcal{L} = (G - \tilde{G})^2 + \sum_j KL(q_j(z|G)||p(z))$

Variational autoencoder for atomic motifs

Training

() For each atom in unit cell, extract local atomic environment up to r_{cut} . Keeps closest n atoms

@ Calculate Gram matrix $x^i \cdot x^j$, keep upper triangular part, $j \ge i$

0 Generate permutation copies of atom labels i (data augmentation) e.g. [1, 2, 3], [1, 3, 2], [2, 1, 3], etc

4 Train VAE using gradient-based optimisation

minimise $\mathcal{L} = (G - \tilde{G})^2 + \sum_j KL(q_j(z|G)||p(z))$

Variational autoencoder for atomic motifs

Density grid

The solution: synchronisation

Density grid

The solution: synchronisation

We know

X = QX'

with some rotation matrix Q. We can solve for this using:

 $\min_{Q} \|X - QX'\|_F$

Density grid

Training and generating

Training

Training and generating

Training

Generating Draw n_Z samples from $\mathcal{N}(0,1)$

8/ 21 Martin Uhrín, Anna Paulish

Symmetry-aware generative model for glassy motifs

Variational autoencoder for atomic motifs

All tests performed in amorphous Si, 512 atom unit cells generated using ML potential trained on DFT¹.

- Radial cutoff: 4 Å
- 8 atoms per environment
- latent space: 8 neurons (compared to 3n 6 = 18 DoFs)

 \bullet Encoder architecture 36-28-18-8 with tanh activations

Data normalisation

•
$$G'_{ii} = (G_{ii} - \mu_{\text{diag}}) / \sigma_{\text{diag}}$$

 $\bullet \; G_{ij}' = (G_{ij} - \mu_{\rm off\text{-}diag}) / \sigma_{\rm off\text{-}diag}, i < j$

9/ 21 Martin Uhrín, Anna Paulish

V. L. Deringer et al., Journal of Physical Chemistry Letters 9, 2879-2885 (2018)

Example generated environments

Training reconstruction

Training reconstruction

Training reconstruction

Generated samples

Training reconstruction

Generated samples

Training reconstruction

Generated samples

Interpolating between motifs

Interpolating between motifs

Inpainting

Atom infilling: Building complete unit cells

Image inpainting

T. F. Chan and J. Shen, Communications on Pure and Applied Mathematics 58, 579–619 (2005) 14/ 21 Martin Uhrín, Anna Paulish

Symmetry-aware generative model for glassy motifs

Atom infilling: Building complete unit cells

Image inpainting

Environment infilling

T. F. Chan and J. Shen, Communications on Pure and Applied Mathematics 58, 579–619 (2005) 14/ 21 Martin Uhrín, Anna Paulish

Symmetry-aware generative model for glassy motifs

Inpainting Atom infilling

Setup

- Calculate initial Gram matrix with known atoms, fill in rest with noise G^{I}
- Project into latent space $z^{I} = f_{encode}(G^{I})$

Inpainting Atom infilling

Setup

- Calculate initial Gram matrix with known atoms, fill in rest with noise G^{I}
- Project into latent space $z^{I} = f_{encode}(G^{I})$

Objective function

$$\min_{z} \|f_{\mathsf{decode}}(z) - G \circ f_{\mathsf{decode}}(z)\|^2$$

i.e. find point that lies on latent space manifold and where known atoms are in their original positions.

Inpainting Atom infilling results

Inpainting Atom infilling results

Conclusion

Conclusion Take aways

UG∧

Symmetry-aware representations allow us to make efficient models that respect isometries of atomic gemetries Using relatively little data we can learn to generate novel motifs and interpolate between them

Variational Autoencoder provides a relatively simple and powerful generative architecture

Infilling will require *longer sightedness*

Conclusion Take aways

UG

Symmetry-aware representations allow us to make efficient models that respect isometries of atomic gemetries

Variational Autoencoder provides a relatively simple and powerful generative architecture

Next Steps

Migrate model onto graph network

 $\mathsf{Cartesian} \to \mathsf{spherical} \ \mathsf{harmonic} \ \mathsf{representation}$

Using relatively little data we can learn to generate novel motifs and interpolate between them

Infilling will require *longer sightedness*

Diffusion

Conclusion We're hiring!

Invariant and equivariant machine learning

- e3nn
- Theory of atomistic structure representations
- Inversion of invariant fingerprints
- Highly data-efficient equivariant neural networks

Generative models

- Linking 3D geometry to properties
- Motif based construction of molecules and materials
- Coupling experiment and theory

Conclusion Acknowledgements

Nicola Marzari

Anna Paulish

Tess Smidt - MIT

Mario Geiger - NVIDIA

EPFL

