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A Challenge of Material Discovery

Pt
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Existing Strategies for Accelerating Material Discovery

Brute-force experimentation
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A Challenge: Too many possibilities 

Pt
•Single Element: 10 combinations

•Binary: 10! / (2! * 8!) = 45 combinations

•Ternary: 10! / (3! * 7!) = 120 combinations

•Quaternary: 10! / (4! * 6!) = 210 combinations

For a pool of 10 potential substitute:
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Existing Strategies for Accelerating Material Discovery

Simulations Active learningAnalytical models
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Challenge: Data Scarcity

Limited experimental data

Under-explored complex systems
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Leveraging Word Embeddings for Materials Prediction

Limited experimental data

Under-explored complex systems

Knowledge 

within literatures
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Leveraging Word Embeddings for Materials Prediction

Pt is a noble catalyst.

WC is a good and cheap catalyst.

Mo2C is an afordable and good catalyst.

Word2vec 
Pt  [1,5]

WC [2,2]

Mo2C [3,1]

Pt

WC

Mo2C

Vec space
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Leveraging Word Embeddings for Materials Prediction

2D vector representation of elements through word2vec model
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Leveraging Word Embeddings for Materials Prediction

Limited experimental data Under-explored complex materials

Knowledge within 

literature
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Dataset Overview
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Gaussian Process (GP) Model
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Enhanced GP Model
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MatNexus*

material vectors

*https://github.com/lab-mids/matnexus
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Advanced Method – Standard Vector 
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Advanced Method – Standard Vector 

literatures

MatNexus*

material vectors, 

property vectors
similarity optimization standard vector similarity
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Prediction Results

(a) Experimental results of Ru-Pd-Ag-Pt system, (b) 

prediction results using GP model, (c) enhanced GP model 
with material vectors, (d)standard vector method.

Metric
Gaussian 

Process (GP)
GP with 

Embeddings

Standard 
Vector 

Method

Overall 
coefficient of 

determination 
(r²)

0.08 0.65 -

Overall 
Correlation (r)

0.85 0.83 0.79

Correlation (r) 
for Current < -

0.2 mA/cm²
0.63 0.60 0.89
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Challenges and Limitations

Data Scarcity 
and Quality

Dependency on 
Literature

Model Complexity and 
Interpretability
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Conclusion

•Using advanced machine learning and vector analysis techniques 
to predict material performance in complex systems.

•The integration of material vectors significantly enhanced 
predictive accuracy.
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Questions and Discussion

Q & A
Lei.Zhang-w2i@rub.de

markus.stricker@rub.de

https://github.com/lab-mids/matnexus
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