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Introduction: Single Atom Catalysts (SACs) \11%

SACs revolutionize catalysis, excelling in performance, atom utilization, properties, and stability.
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Introduction: X-ray Absorption Spectroscopy (XAS)

XAS utilizes X-ray radiation to provide insights into composition, structure, and bonding.

NEXAFS EXAFS
(= XANES)?Hﬁ

C

5

o

(@)

(/)]

0

<

PAUL SCHERRER INSTTUT \A
- 0 100 200

E-E,(eV)

Chemical Reviews, 2001, 101, 6, 1779-1808 (DOI)


https://doi.org/10.1021/cr9900681

Introduction: Deep Learning for XAS \11%
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Unsupervised Learning: T, Generative Factors
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Results: Training Strategy
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Results: Theoretical Dataset
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Results: EXAFS Workflow
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Results: GNN Model @ & O \11%
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« Graph Representation: Nodes are initialized with unique one-hot encoded arrays and edge
resembling chemical bonds in the structure.

« Graph Neural Network (GNN): The model is constructed with 3 main building blocks, linear
transformations, graph convolutions and pooling operations.



Results: Model Performance (Theoretical vs Theoretical)
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Results: Model Performance (Theoretical vs Theoretical)
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Future Steps

Data Collection:

» Collect experimental data to fine-tune the GNN model

« Implementing different fine-tuning strategies (e.g., Gradual Unfreezing)
Application:

« Use our method for real world problems
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