Practical Machine Learning for Organic Small Molecule Modeling

Machine Learning Modalities for Materials Science Workshop

16 May 2024

Emma King-Smith

Transfer Learning to Unlock Chemical Predictions in Low Data Regimes

Part I:

simple

12

simple

easy to implement

can be used with any dataset

simple

easy to implement

more challenging

16

Dataset 1 (Information on desired system)

Dataset 1 (Information on desired system)

Dataset 2 (Information on tangential system)

Dataset 1 (Information on desired system)

Insufficient Accuracy

Dataset 2 (Information on tangential system)

Dataset 1 (Information on desired system)

Insufficient Accuracy

Improved Accuracy

The Minisci Reaction

heterocycle

functionalized heterocycle

The Minisci Reaction

heterocycle

functionalized heterocycle

The Minisci Reaction

Regioselectivity Factors of the Minisci Reaction

heterocycle

Electronics, sterics, and longevity of •R'

J. Am. Chem. Soc. **2013**, *135*, 12122.

functionalized heterocycle

Regioselectivity Factors of the Minisci Reaction

heterocycle

Electronics, sterics, and longevity of •R'

Electronics of heterocycle

J. Am. Chem. Soc. **2013**, *135*, 12122.

functionalized heterocycle

DFT-derived Fukui reactivity indices are ~90% accurate.

RSC Adv. 2014, 4, 17262. ChemMedChem 2018, 13, 983.

DFT-derived Fukui reactivity indices are ~90% accurate.

RSC Adv. 2014, 4, 17262. ChemMedChem 2018, 13, 983.

DFT-derived Fukui reactivity indices are ~90% accurate.

RSC Adv. 2014, 4, 17262. ChemMedChem 2018, 13, 983.

Possible **Reaction Sites**

heterocycle

DFT-derived Fukui reactivity indices are ~90% accurate.

RSC Adv. 2014, 4, 17262. ChemMedChem 2018, 13, 983.

functionalized heterocycle

DFT-derived Fukui reactivity indices are ~90% accurate.

Can machine learning provide some improvement?

RSC Adv. 2014, 4, 17262. ChemMedChem 2018, 13, 983.

The Big Idea

small molecule

The Big Idea

Message Passing Neural Network (MPNN)

The Big Idea

embedded molecule

Message Passing Neural Network (MPNN)
The Big Idea

J Chemoinformatics **2020**, *12*, 1. J. Chem. Inf. Model. 2021, 61, 2594. *ChemRxiv* **2022**, DOI: 10.26343/chemrxiv-2022-gkxm6-v2 37 *J Chemoinformatics* **2020**, *12*, 15. *Chem. Sci.* **2021**, *12*, 2198.

The Big Idea

ChemRxiv **2022**, DOI: 10.26343/chemrxiv-2022-gkxm6-v2 *J Chemoinformatics* **2020**, *12*, 1.

J Chemoinformatics **2020**, *12*, 15. *Chem. Sci.* **2021**, *12*, 2198.

2, 1. *J. Chem. Inf. Model.* **2021**, *61*, 2594. 38

The Big Idea

ChemRxiv **2022**, DOI: 10.26343/chemrxiv-2022-gkxm6-v2 *J Chemoinformatics* **2020**, *12*, 1.

J Chemoinformatics **2020**, *12*, 15. *Chem. Sci.* **2021**, *12*, 2198.

2, 1. *J. Chem. Inf. Model.* **2021**, *61*, 2594.

Baselines

Nat. Commun. 2024, 15, 426.

Model Accuracy (F-Score)

Baselines

Nat. Commun. 2024, 15, 426.

Model Accuracy (F-Score)

A Good Start

Nat. Commun. 2024, 15, 426.

Model Accuracy (F-Score)

A Modest Improvement

Nat. Commun. 2024, 15, 426.

Model Accuracy (F-Score)

A Modest Improvement

Nat. Commun. 2024, 15, 426.

Model Accuracy (F-Score)

Model

44

Significant Improvement!

Nat. Commun. 2024, 15, 426.

Model Accuracy (F-Score)

n Forest	Random F

Significant Improvement!

Nat. Commun. 2024, 15, 426.

Model Accuracy (F-Score)

Inclusion of Fukui Indices as Atom Information

Nat. Commun. 2024, 15, 426.

Model Accuracy (F-Score)

small

How do we do in a real-life scenario?

Nat. Commun. 2024, 15, 426.

large

Nat. Commun. 2024, 15, 426.

Test Set Model Comparisons

Nat. Commun. 2024, 15, 426.

= New Molecules

Test Set Model Comparisons

A Different Reaction Altogether

molecule

functionalized molecule

A Different Reaction Altogether

A Different Reaction Altogether

Biochemistry **2018**, *57*, 403.

Nat. Commun. 2024, 15, 426.

= New Molecules

Test Set Model Comparisons

How Do We Perform On a P450-Only Test Set?

Accuracy (F-Score)

Nat. Commun. 2024, 15, 426.

= Old Test Set

= New Molecules

= P450-only Reactions

Test Set Model Comparisons

Comparison To Other Reactivity-Based Models

Chem. Sci. 2021, 12, 2198. J Cheminform. 2022, 14, 46.

Model Top-1 Accuracy

= Best Model

Comparison To Other Reactivity-Based Models

Chem. Sci. 2021, 12, 2198. J Cheminform. 2022, 14, 46.

Model Top-1 Accuracy

= Best Model

Comparison To Other Reactivity-Based Models

Chem. Sci. 2021, 12, 2198. J Cheminform. 2022, 14, 46.

Model Top-1 Accuracy

= Best Model

~27,000 spectra

J. Chem. Inf. Comput. 2003, 43, 1733.

Acta Crystallogr. B: Struct. Sci. Cryst. Eng. Mater. 1979, 35, 2331.

1,000,000+ compounds

small molecule crystal structure

Chem. Sci. **2024**, *15*, 5143.

small molecule crystal structure

Chem. Sci. **2024**, *15*, 5143.

small molecule crystal structure

Chem. Sci. **2024**, *15*, 5143.

acute toxicity

Chem. Sci. **2024**, *15*, 5143.

olfactive classifcation

	Suzuki Yield Error (MAE)		
Model	Unseen Boronic Acids	Unseen Aryl Halides	
Random Forest			
Adaboost			
Yield-BERT			
GraphRXN			
Crystal-Yield			

*Increased Crystal-Yield's size to half of GraphRXN's parameters

Chem. Sci. **2024**, *15*, 5143.

Unseen	Unseen		
Boronic	Aryl	Unseen	Unseen
Acids	Halides	Ligands	Additives

	Suzuki Yield Error (MAE)		
Model	Unseen Boronic Acids	Unseen Aryl Halides	
Random Forest			
Adaboost			
Yield-BERT			
GraphRXN			
Crystal-Yield	18.4 ± 0.3	18.5 ± 0.2	

*Increased Crystal-Yield's size to half of GraphRXN's parameters

Chem. Sci. **2024**, *15*, 5143.

Unseen	Unseen		
Boronic	Aryl	Unseen	Unseen
Acids	Halides	Ligands	Additives

21.3 ±	13.4 ±	11.7 ±	16.2 ±
3.3	0.3	2.2*	0.4

	Suzuki Yield Error (MAE)		
Model	Unseen Boronic Acids	Unseen Aryl Halides	
Random Forest	19.5 ± 0.03	19.5 ± 0.03	
Adaboost	21.6 ± 0.1	21.5 ± 0.1	
Yield-BERT			
GraphRXN			
Crystal-Yield	18.4 ± 0.3	18.5 ± 0.2	

*Increased Crystal-Yield's size to half of GraphRXN's parameters

Chem. Sci. **2024**, *15*, 5143.

UNIVERSITY OF CAMBRIDGE

Unseen Boronic Acids	Unseen Aryl Halides	Unseen Ligands	Unseen Additives
25.2 ±	28.1 ±	28.5 ±	30.4 ±
2.0	4.1	0.6	1.5
24.7 ±	25.5 ±	27.9 ±	26.7 ±
2.6	2.9	0.7	0.5
21.3 ±	13.4 ±	11.7 ±	16.2 ±
3.3	0.3	2.2*	0.4

	Suzuki Yield Error (MAE)	
Model	Unseen Boronic Acids	Unseen Aryl Halides
Random Forest	19.5 ± 0.03	19.5 ± 0.03
Adaboost	21.6 ± 0.1	21.5 ± 0.1
Yield-BERT	21.9 ± 0.06	22.0 ± 0.03
GraphRXN	40.0 ± 3.0	37.8 ± 2.7
Crystal-Yield	18.4 ± 0.3	18.5 ± 0.2

*Increased Crystal-Yield's size to half of GraphRXN's parameters

Chem. Sci. **2024**, *15*, 5143.

Mach. Learn.: Sci. Technol. 2021, 2, 015016.

J. Chemoinformatics **2023**, *15*, 72.

UNIVERSITY OF CAMBRIDGE

Unseen Boronic Acids	Unseen Aryl Halides	Unseen Ligands	Unseen Additives
25.2 ±	28.1 ±	28.5 ±	30.4 ±
2.0	4.1	0.6	1.5
24.7 ±	25.5 ±	27.9 ±	26.7 ±
2.6	2.9	0.7	0.5
24.7 ±	24.3 ±	24.3 ±	24.1 ±
2.1	1.6	1.4	0.7
25.2 ±	17.9 ±	13.8 ±	17.5 ±
7.0	4.6	1.7	1.8
21.3 ±	13.4 ±	11.7 ±	16.2 ±
3.3	0.3	2.2*	0.4

LD50 Toxicity Predictions

Model	Pharmaceutic (MAE)
Random Forest	
Gaussian Process	
Adaboost	
Oloren Cher Engine	m
Crystal-To>	0.52 ± 0.007

Chem. Sci. **2024**, *15*, 5143.

cals

7

LD50 Toxicity Predictions

Model	Pharmaceutic (MAE)
Random Forest	0.62 ± 0.002
Gaussian Process	0.73 ± 0.002
Adaboost	0.71 ± 0.002
Oloren Chem Engine	
Crystal-Tox	0.52 ± 0.007

Chem. Sci. **2024**, *15*, 5143.

cals

LD50 Toxicity Predictions

	Model	Pharmac (MA	eutic \E)
F	Random Forest	0.62 ±	0.002
G F	aussian Process	0.73 ±	0.002
A	daboost	0.71 ±	0.002
Olo	ren Chem Engine	0.55 ±	0.00
Cr	ystal-Tox	0.52 ±	0.007

Chem. Sci. **2024**, *15*, 5143.

ChemRxiv Preprint **2022**, DOI: 10.26434/chemrxiv-2022-zz776.

cals

- 2
- 2
-)2
- 09
- 7

New Molecules for Testing

Chem. Sci. 2024, 15, 5143.

New Molecules for Testing

Chem. Sci. 2024, 15, 5143.

New Molecules for Testing

LD50 Toxicity Predictions

	Model	Pharmac (MA	eutic \E)
F	Random Forest	0.62 ±	0.002
G F	aussian Process	0.73 ±	0.002
A	daboost	0.71 ±	0.002
Olo	ren Chem Engine	0.55 ±	0.00
Cr	ystal-Tox	0.52 ±	0.007

Chem. Sci. **2024**, *15*, 5143.

ChemRxiv Preprint **2022**, DOI: 10.26434/chemrxiv-2022-zz776.

cals

- 2
-)2
- 09
- 7

LD50 Toxicity Predictions

Model	Pharmaceuticals (MAE)	Non-Pharmaceuticals (MAE)
Random Forest	0.62 ± 0.002	1.59 ± 0.02
Gaussian Process	0.73 ± 0.002	1.86 ± 0.002
Adaboost	0.71 ± 0.002	1.77 ± 0.002
Oloren Chem Engine	0.55 ± 0.009	1.48 ± 0.006
Crystal-Tox	0.52 ± 0.007	1.38 ± 0.02

Chem. Sci. **2024**, *15*, 5143.

ChemRxiv Preprint **2022**, DOI: 10.26434/chemrxiv-2022-zz776.

Chiral & Non-Chiral

Model	Macro F-Score	We F-
Random	0.19 ±	0
Forest	0.1	0
K-Nearest	0.20 ±	0
Neighbors	0.002	0
Crystal-	0.62 ±	0
Olfaction	0.004	0

Chem. Sci. **2024**, *15*, 5143.

eighted -Score

).32 ± 0.009

).33 ±

0.002

.92 ±).002

	Chiral & No	on-Chiral	Enantiomer	Differentiation
Model	Macro	Weighted	Macro	Weighted
	F-Score	F-Score	F-Score	F-Score
Random	0.19 ±	0.32 ±	0.069 ±	0.31 ±
Forest	0.1	0.009	0.002	0.003
K-Nearest	0.20 ±	0.33 ±	0.31 ±	0.20 ±
Neighbors	0.002	0.002	0.0002	0.001
Crystal-	0.62 ±	0.92 ±	0.58 ±	0.93 ±
Olfaction	0.004	0.002	0.003	0.002

Hidden Chemical Insights from Lightweight Machine Learning

Part II:

Can get accurate predictions

Can get accurate predictions

High computational resources

Can get accurate predictions

High computational resources

Careful optimization of learning architecture

Can get accurate predictions

High computational resources

Careful optimization of learning architecture

High data requirement

Can get accurate predictions

High computational resources

Careful optimization of learning architecture

High data requirement

Can get accurate predictions

High computational resources

Careful optimization of learning architecture

High data requirement

Run on your laptop

Can get accurate predictions

High computational resources

Careful optimization of learning architecture Ready to use systems

High data requirement

Run on your laptop

Can get accurate predictions

High computational resources

Careful optimization of learning architecture

High data requirement

Run on your laptop

are Ready to use systems

Lower data requirement

Can get accurate predictions

High computational resources

Careful optimization of learning architecture

High data requirement

Lightweight ML

Qualitative Predictions

Run on your laptop

Ready to use systems

Lower data requirement

Can get accurate predictions

High computational resources

Careful optimization of learning architectu

High data requirement

hido

	Image: Constrained state Image: Constrained state Image: Constrained state Image: Constrained state
	Qualitative Predictions
	Run on your laptop
ure	Ready to use systems
	Lower data requirement
den o insi	chemical ghts

Ullmann Condensations

Ullmann Condensations

Historical data

Ullmann Condensations

Historical data

What are the important factors for reaction yield in each specific reaction class?

Important Features of Ullmann Condensation

Important Features of Ullmann Condensation

Dalton Trans. 2012, 41, 13832.

Solvent can effect active catalytic species.

Dalton Trans. 2012, 41, 13832.

Tetrahedron Lett. **2008**, *49*, 2018.

Tetrahedron Lett. **2008**, *49*, 2018.

We can draw out the best solvents for a given reaction.

Tetrahedron Lett. **2008**, *49*, 2018.

No systematic review of solvent effects.

Acknowledgements

Lee Group

Dr. Alpha Lee

Dr. Felix Faber

Rokas Elijošius

William McCorkindale

Pfizer

Dr. Joy Yang Dr. Roger M. Howard Dr. Simon Berritt Dr. Anton V. Sinitskiy Usa Reilly

Newton International Fellowship (Royal Society)

Have a Question? esk34@cam.ac.uk

Gaunt Group

Prof. Matt Gaunt

Dr Srimanta Manna

Markus Böcker

Wolfson College

Prof. Jane Clarke

Lyn Alcantara

Wolfson College Choir

Funding

Pfizer

Training and Test Set Comparisons

arXiv preprint **2021**, DOI: arXiv:2102.09548.

Acute Toxicity of Training and Testing Sets

Backup: Retrospective Test Set

Nat. Commun. 2024, 15, 426.

Backup: Retrospective Test Set

Nat. Commun. 2024, 15, 426.

Backup: Prospective Results

Nat. Commun. 2024, 15, 426.

Backup: Prospective Results

Nat. Commun. 2024, 15, 426.

2

The Data

Reaction Class

Nat. Commun. 2024, 15, 426.

Dataset Breakdown: Molecules

Backup: Baran Heuristics

J. Am. Chem. Soc. 2013, 135, 12122.

Model

F-Score

= Best Model

Model

Model

Backup: F-Score, Accuracy, and AUROC

Nat. Commun. 2024, 15, 426.

= Best Model

Model

Backup: F-Score, Accuracy, and AUROC

Model

Nat. Commun. 2024, 15, 426.

= Best Model

Model Performance (Accuracy) on **Prospective Test Set** NMR Transfer Learn (Fukui) **MPNN_{LSF}** Fukui

AUROC

Model

Model

Backup: PCA of the Dataset Chemical Space

Nat. Commun. 2024, 15, 426.

Backup: Fukui Indices

heterocycle

Fukui function-derived predictions

$$F_i(-) = q_i(N-1) - q_i(N) \quad \text{(electrophilic radicals)}$$

$$f_i(0) = \frac{q_i(N-1) - q_i(N+1)}{2} \quad \text{(nucleophilic radicals)}$$

$$F_i(-) = q_i(N-1) - q_i(N) \quad \text{(electrophilic radicals)}$$

$$F_i(0) = \frac{q_i(N-1) - q_i(N+1)}{2} \quad \text{(nucleophilic radicals)}$$

 $q_i(N)$ = charge at atom i in a molecule with N electrons.

Nat. Commun. 2024, 15, 426.

Backup: Schneider QM-Augmented MPNN

	F-Score / %	Ρ
aGNN2D	$ 38 (\pm 5)$	56
aGNN2DQM	$39 (\pm 2)$	54
aGNN3D	$59 (\pm 3)$	62
aGNN3DQM	60 (±4)	62

Nat. Chem. 2024, 16, 239.

Backup: Representative P450 Test Set Molecules

Fragrance Dataset Breakdown

Classes

Chem. Sci. **2024**, *15*, 5143.

Molecule Distribution

Molecule Type

*enantiomers = % enantiomers in all chiral molecules

Enantiomeric Pairs Predictions: Similar Olfactive Notes

Chem. Sci. 2024, 15, 5143.

(*R*)-isomethone (**17**)

mint

(mint)

(*S*)-isomethone (**18**)

mint

(mint)

= correctly identified similarity / dissimilarity in olfactive notes

= incorrectly identified similarity / dissimilarity in olfactive notes

Enantiomeric Pairs Predictions: Dissimilar Olfactive Notes

(cheesy*)

(ethereal)

29

coconut, fruity, sweet

(---)

grassy, spicy, sweet, vanilla

(*R*)-camphene (**31**)

balsamic, medicinal

(---)

(S)-camphene (**32**)

camphoreous, pine

(camphoreous)

= correctly identified similarity / dissimilarity in olfactive notes

33 dairy, floral, sweet

(---)

SH *n*-Pr **`OH**

21

herbal, sulfurous

(sulfurous)

(*R*)-methone (**23**)

(---)

SH ΌΗ *n*-Pr

22 blackcurrant, fruity, sweet, topical, woody

(sweet, fruity)

(*S*)-methone (**24**)

camphoreous, fresh

(camphoreous)

= incorrectly identified similarity / dissimilarity in olfactive notes

Performance on CCDC Dataset

Model

Small MPNN Large MPNN

Mean Squared Error (MSE) of total loss (bond distance loss + bond angles loss) on crystal structure data for a variety of message passing neural networks (MPNNs). Test set consisted of unseen molecules.

Chem. Sci. 2024, 15, 5143.

Test Set MSE 3.17 2.93

Per-Molecule Error Rate (Toxicity)

Compound	True Toxicity (log(mol kg ⁻¹))	Crystal-Tox Predicted Toxicity (log(mol kg ⁻¹))	Oloren ChemEngine Predicted Toxicity (log(mol kg ⁻¹))
water	-0.70	1.53	1.98
sucrose	1.06	1.01	1.48
glucose	0.84	1.25	1.77
monosodium glutamate	1.00	1.66	2.10
THC	2.39	2.88	2.53
CBD	2.51	2.62	2.41
aconitine	6.90	3.84	3.38
epibatidine	7.43	2.88	2.93
MDMA	3.08	2.59	2.55
cocaine	3.50	2.09	2.67
LSD	4.29	2.65	2.89
heroin	4.23	2.80	3.19

Per-Molecule Set Error Rate (Yields)

Madal	Split MAE								
Niodel	Halide Set 0	Halide Set \overline{I}	Halide Set 2	Halide Set 3					
Random Forest	23.6	23.9	22.2	31.0					
Gaussian Process	27.3	25.2	21.7	30.9					
Adaboost	24.6	23.9	18.7	31.6					
Yield-BERT	27.3	25.2	21.7	30.9					
GraphRXN	9.5	41.6	30.9	18.7					
Crystal-Yield	26.7	14.8	16.3	27.5					
	Base 0	Base 1	Base 2						
Random Forest	32.0	32.4	19.9						
Gaussian Process	31.0	34.3	24.8						
Adaboost	27.2	29.5	19.9						
Yield-BERT	23.3	27.4	22.1						
GraphRXN	12.8	27.1	13.8						
Crystal-Yield	13.9	13.0	13.4						
	Ligand 0	Ligand 1	Ligand 2	Ligand 3					
Random Forest	27.4	29.0	27.6	29.8					
Course Days									
Gaussian Process	39.8	32.2	29.2	30.6					
Gaussian Process Adaboost	39.8 26.8	32.2 29.9	29.2 25.9	30.6 27.2					
Gaussian Process Adaboost Yield-BERT	39.8 26.8 20.4	32.2 29.9 24.0	29.2 25.9 25.8	30.6 27.2 27.0					
Gaussian Process Adaboost Yield-BERT GraphRXN	39.8 26.8 20.4 9.7	32.2 29.9 24.0 17.6	29.2 25.9 25.8 12.7	30.6 27.2 27.0 15.2					
Gaussian Process Adaboost Yield-BERT GraphRXN Crystal-Yield	39.8 26.8 20.4 9.7 24.5	32.2 29.9 24.0 17.6 23.4	29.2 25.9 25.8 12.7 10.4	30.6 27.2 27.0 15.2 14.5					
Gaussian Process Adaboost Yield-BERT GraphRXN Crystal-Yield Crystal-Yield ^a	39.8 26.8 20.4 9.7 24.5 17.1	32.2 29.9 24.0 17.6 23.4 12.2	29.2 25.9 25.8 12.7 10.4 6.5	30.6 27.2 27.0 15.2 14.5 10.8					
Gaussian Process Adaboost Yield-BERT GraphRXN Crystal-Yield Crystal-Yield ^a	39.8 26.8 20.4 9.7 24.5 17.1 <i>Additive Set 0</i>	32.2 29.9 24.0 17.6 23.4 12.2 Additive Set 1	29.2 25.9 25.8 12.7 10.4 6.5 Additive Set 2	30.6 27.2 27.0 15.2 14.5 10.8 Additive Set 3					
Gaussian Process Adaboost Yield-BERT GraphRXN Crystal-Yield Crystal-Yield ^a Random Forest	39.8 26.8 20.4 9.7 24.5 17.1 <i>Additive Set 0</i> 34.0	32.2 29.9 24.0 17.6 23.4 12.2 <i>Additive Set 1</i> 31.3	29.2 25.9 25.8 12.7 10.4 6.5 <i>Additive Set 2</i> 26.7	30.6 27.2 27.0 15.2 14.5 10.8 <i>Additive Set 3</i> 29.4					
Gaussian Process Adaboost Yield-BERT GraphRXN Crystal-Yield Crystal-Yield ^a Random Forest Gaussian Process	39.8 26.8 20.4 9.7 24.5 17.1 <i>Additive Set 0</i> 34.0 32.7	32.2 29.9 24.0 17.6 23.4 12.2 <i>Additive Set 1</i> 31.3 29.0	29.2 25.9 25.8 12.7 10.4 6.5 <i>Additive Set 2</i> 26.7 24.5	30.6 27.2 27.0 15.2 14.5 10.8 <i>Additive Set 3</i> 29.4 27.9					
Gaussian Process Adaboost Yield-BERT GraphRXN Crystal-Yield Crystal-Yield ^a Random Forest Gaussian Process Adaboost	39.8 26.8 20.4 9.7 24.5 17.1 <i>Additive Set 0</i> 34.0 32.7 29.0	32.2 29.9 24.0 17.6 23.4 12.2 <i>Additive Set 1</i> 31.3 29.0 27.3	29.2 25.9 25.8 12.7 10.4 6.5 <i>Additive Set 2</i> 26.7 24.5 26.7	30.6 27.2 27.0 15.2 14.5 10.8 <i>Additive Set 3</i> 29.4 27.9 27.5					
Gaussian Process Adaboost Yield-BERT GraphRXN Crystal-Yield Crystal-Yield ^a Random Forest Gaussian Process Adaboost Yield-BERT	39.8 26.8 20.4 9.7 24.5 17.1 <i>Additive Set 0</i> 34.0 32.7 29.0 25.2	32.2 29.9 24.0 17.6 23.4 12.2 <i>Additive Set 1</i> 31.3 29.0 27.3 22.9	29.2 25.9 25.8 12.7 10.4 6.5 <i>Additive Set 2</i> 26.7 24.5 26.7 22.8	30.6 27.2 27.0 15.2 14.5 10.8 <i>Additive Set 3</i> 29.4 27.9 27.5 25.3					
Gaussian Process Adaboost Yield-BERT GraphRXN Crystal-Yield Crystal-Yield ^a Random Forest Gaussian Process Adaboost Yield-BERT GraphRXN	39.8 26.8 20.4 9.7 24.5 17.1 <i>Additive Set 0</i> 34.0 32.7 29.0 25.2 16.7	32.2 29.9 24.0 17.6 23.4 12.2 <i>Additive Set 1</i> 31.3 29.0 27.3 22.9 15.2	29.2 25.9 25.8 12.7 10.4 6.5 <i>Additive Set 2</i> 26.7 24.5 26.7 22.8 22.8	30.6 27.2 27.0 15.2 14.5 10.8 <i>Additive Set 3</i> 29.4 27.9 27.5 25.3 15.4					

UNIVERSI
CAMBRI

Ranked Elements in Training Foundational Model

				-	0.	•		0
Os	Re	Au	Rh	K	W	Na	AI	Pt
V	Cr	Ti	Pb	Eu	lr	As	U	Ga
TI	Rb	Sc	Nb	Та	Но	Cs	Sr	Yb
				lea	ast co	mmo	n ele	ment
	Os V TI	OsReVCrTIRb	OsReAuVCrTiTIRbSc	OsReAuRhVCrTiPbTIRbScNb	OsReAuRhKVCrTiPbEuTIRbScNbTaIea	OsReAuRhKWVCrTiPbEuIrTIRbScNbTaHoleast co	OsReAuRhKWNaVCrTiPbEuIrAsTiRbScNbTaHoCsleast commo	OsReAuRhKWNaAlVCrTiPbEuIrAsUTIRbScNbTaHoCsSrIeast common ele

set												
Ρ	В	S	CI	Ρ	В	Si	Br	Cu	I	Fe	Zn	Со
Na	AI	Pt	Ag	Li	Sn	Pd	Se	Мо	Mn	Ru	Cd	Ni
As	U	Ga	Ge	Mg	Sb	Tb	Gd	Zr	Те	Hg	Dy	Nd
Cs	Sr	Yb	Се	Ва	Er	Y	Pr	Bi	Sm	In	La	Ca
mmon elements in dataset												
Np	Pu											

Selected Molecules in Yield Datasets

Selected Molecules in Yield Datasets

How Does the MPNN Work?

Nat. Commun. 2024, 15, 426.

Yield Prediction

Suzuki USPTO Yield Distribution

J. Am. Chem. Soc. 2022, 144, 4819. Science 2018, 360, 186.

Buchwald-Hartwig HTE Yield Distribution

Yield

The Big Idea

