Machine Learning for Investigation of Nickel Surface Chemistry in Electrocatalytic Production of Hydrogen

Dušan Strmčnik

Ljubljana, May 2024

ARIS Funded Fundamental project

Fundamental understanding of Hydrogen Evolution Reaction for a new generation of nickel-based electrocatalysts in alkaline water and chlor-alkali electrolysis

Motivation - IEA – Energy technology perspectives

Global hydrogen production by technology in the Sustainable Development Scenario, 2019-70

IEA 2020. All rights reserved.

Note: CNR = hydrogen as by-product from catalytic naphtha reforming in refineries.

Today, hydrogen is produced almost entirely from fossil fuels without CCUS. Low-carbon hydrogen production dominates in the Sustainable Development Scenario, with almost all hydrogen production either from low-carbon electricity or fossil fuels with CCUS.

www.iea.org

Water electrolysis

Objective(s)

This proposal aims to advance the fundamental understanding of HER on nickel-based cathode catalysts and to utilize this knowledge to develop a new generation of nickel catalysts with 10-times higher activity than state of the art.

- 1) What are the active sites for HER on Ni catalysts?
- 2) What is the role of individual Ni surface species (Ni⁰, NiO, Ni(OH)₂, Ni(OOH), etc.) in HER electrocatalysis?
- 3) What is the role of electrolyte pH, cations and anions in HER electrocatalysis on Ni?

Can we find a way to control, influence and alter the electrochemical interface and its properties, instead of just observing and evaluating different combinations of the electrode materials and electrolytes?

Approach

- The spread of literature-reported catalytic activities for HER on Ni is quite large – a sign of complexity of the system stemming from rich Ni surface chemistry
- Simplify complex Ni-based systems to well-defined systems
- Develop/utilize several Ni platforms, that connect model to real systems
- Develop new tools and methods for the investigation of electrode-electrolyte interphase
- Execute detailed analysis of Ni-based materials and electrolyte using established analytical tools and methods (EIS, ToF-SIMS, FTIR, Raman, XPS, RRDE, AFM)
- Develop understanding how individual components of the cathode-electrolyte interphase behave at potentials relevant for water electrolysis
- Determine intrinsic nickel electrochemical properties over many different nickel platforms, from single atom, over nanoparticles to extended, micro and millimeter size samples.
- Develop next generation of materials for HER in alkaline water and chlor-alkali electrolysis

Univerza v Mariboru

Approach

Synthesis of Ni platforms

Univerza v Mariboru

Fakulteta za kemijo in kemijsko tehnologijo

Fakulteta *za kemijo*

in kemijsko tehnologijo

Electrocatalysis happens at the surface

- We are mainly interested in the first few layers of the electrode material.
- Voltammograms give us information about the interaction of electrode material with the electrolyte
- Polarization curves give us information about the catalytic activity of material for a given reaction, e.g. HER
- We want to correlate surface chemistry with electrochemical properties
- We need surface-sensitive analytical tools that provide us with surface composition of the electrode
- One of such tools is ToF-SIMS

ToF-SIMS

- ToF-SIMS is one of the most sensitive tools available for surface analysis
- It provides information about chemical composition of the sample in 3D with nanometer depth resolution
- Ideal for needle in a haystack problems – we look for fragment with mass of analyte
- However,...

ToF-SIMS data

- We collect 500 spectra per depth profile
- In each spectra, there are over 1000 fragments identified
- Each fragment is formed from a species/compound in the sample
- However, same fragment can come from multiple sources and same source can create multiple fragments

Clustering based on correlation matrix

• We find three groups of fragments

 $\begin{array}{l} C_{3}^{-}, C_{2}H^{-}, F^{-}, SO_{3}^{-}, C_{4}^{-}, C_{3}H^{-}, Cl^{-}, ^{37}Cl^{-}, C_{5}^{-}, H^{-} \\ ^{18}OH^{-}, SO_{2}^{-}, NiO_{2}H^{-}, O^{-}, Cs^{-}, ^{60}NiO^{-}, NiO^{-}, S^{-}, Si^{-}, AlO^{-}, \\ NiOO^{-}, ^{18}O^{-}, O_{2}^{-}, \\ Zn^{-}, Ni^{-}, ^{60}Ni^{-}, S_{2}^{-}, ^{60}NiH_{2}^{-}, NiH_{2}^{-}, OH^{-}, C_{2}^{-}, NiH^{-} \end{array}$

- First group corresponds to surface contaminants during sample transfer
- Second group corresponds to the interfacial film grown electrochemically
- Third group corresponds to the bulk of the sample

Fig. 1. The result of hierarchical clustering, which is based on a correlation matrix (i.e.,distance determined by Spearman's coefficient of correlation) between the fragment concentrations. It highlights three prominent clusters (represented by red squares).

Equation discovery

- We use the symbolic regression method SINDy to identify mathematical relations between the fragments' intensities in mass spectra
- We work under the assumption that each fragment can be written as a linear combination of the other fragments
- We have some naturally built-in controls, i.e. isotope ratios, which the method identifies
- It also gives several nonsensical correlations and a few that need to be further investigated

RMSE	Equation
0.021795863084589678	$NiO_2H = 0.6 H + 0.1 O$
0.0033206752460522896	$NiO_2H = -1.1$ ⁶⁰ Ni + -1.0 H + -0.2 NiOO + -0.2 O + 0.1
	1
0.004233586747772646	60NiO = 0.4 NiO + 0.3 NiOO
0.0037185370554185812	60NiO = 1.7 S + 0.4 NiO + -0.2 NiOO + -0.1 O + 0.1 H
0.008058476834946827	$NiO = 1.4$ ^60 $NiO + 0.2 O$
0.007406643004447469	NiO = 1.7 60NiO + -0.3 NiOO + 0.2 O
0.015212412093664442	$NiOO = 0.8$ ^60 NiO
0.0023918287909048186	$NiOO = 2.1 S + 0.9 60NiO + -0.5 NiO + 0.2 NiO_2H$
0.001435557137991067	60Ni = 0.4 Ni
0.003683555402379558	Ni = 2.6 ⁶⁰ Ni
0.0030517186004265597	$Ni = 2.6 60Ni + -0.1 NiOO + 0.1 NiO_2H$
0.00017684283747765588	$NiH_2 = -0.3 S + 0.2 C_2H + 0.1 NiOO + 0.1 H$
5.814649192873677e-05	37Cl = 0.3 Cl
4.4421552673896455e-05	$C_4 = 0.1 C_2 H$
0.01518639975828391	$H = 0.3 \text{ NiO}_2H$
0.0020718868588780735	$O_{-2} = 0.2$ NiOO
0.03758364227543406	O = 1.3 NiO
0.023018259177337828	O = 1.4 NiO + -1.1 NiOO + 0.4 OH
0.0008732008268265299	S = 0.2 NiOO + 0.1 NiO
0.051956297621226194	OH = 0.6 O
0.0045469638968045935	OH = 0.6 NiOO + -0.4 NiO + 0.1 1 + 0.1 Ni + 0.1 O

Conclusions

- Initial application of machine learning methods on ToF-SIMS data has given some encouraging preliminary results
- Clustering of fragments shows logical distribution of species within the electrochemical interface, significantly reducing time of similar analysis if done by user
- Equation discovery needs further improvement, most likely better initial guidance, but we also need some improvements in spectra collection and sample preparation
- Quality of data is the most important factor in successful implementation of ML methods

Thank you!

