

Machine learning for analysis of experimental scattering data in materials chemistry

16.05.2024

3

What is the PDF?

5

Pair distribution function (PDF) represents a histogram of interatomic distances

DTU

₩

There's no place like real-space: elucidating size-dependent atomic structure of nanomaterials using pair distribution function analysis, Christiansen T. L. & Cooper S. R., Jensen K. M. Ø., Nanoscale Adv. (2020)

Solving the PDF using triangulation

Particle-particle

correlations

10

 $var(d) = 0.008 Å^2$

 $var(C_{60}) = 0.016 \text{ Å}^2$

High error

15

Structural changes during the growth of atomically precise metal oxido nanoclusters

[Bi₆O₅(OH)₃(NO₃)₅]·(H₂O)₃ crystals DMSO

[Bi38O45] cluster

In situ PDF of crystalline $[Bi_6O_5]$ in DMSO solution

HPLC pung Synchrotron

In situ PDF of crystalline $[Bi_6O_5]$ in DMSO solution

What is happening here??

Fingerprint matching The brute-force approach

Fingerprint database

Measured fingerprint

Scattering pattern matching

DTU

Ħ

The brute-force approach

Cluster-mining: an approach for determining core structures of metallic nanoparticles from atomic pair distribution function data, BanerJee S., et al., Acta Cryst. A (2020)
DeepStruc: Towards structure solution from pair distribution function data using deep generative models, Kjær E. T. S. & Anker A. S., et al., Digital Discovery (2023) (Front cover)

Scattering pattern matching The brute-force approach

DTU

Using ML to analyse scattering data

- > Machine Learning for Analysis of Experimental Scattering and Spectroscopy Data in Materials Chemistry, Anker S. A. et al., Chemical Science (2023)
- MetalFinder DeepStruc: Towards structure solution from pair distribution function data using deep generative models, Kjær E. T. S. & Anker A. S., et al., Digital Discovery (2023)
- > CIF-Finder MLstructureMining: A machine learning tool for structure identification from X-ray pair distribution functions, E. T. S. Kjær, et al. Digital Discovery (2024)
- POMFinder Identifying polyoxometalate cluster structures from pair distribution function data using explainable machine learning, Anker A. S., et al., J. Appl. Crystallogr. (2024)

ML analysis of scattering and spectroscopy data

Machine learning challenges

> Machine Learning for Analysis of Experimental Scattering and Spectroscopy Data in Materials Chemistry, Anker S. A. et al., Chemical Science (2023)

> DeepStruc: Towards structure solution from pair distribution function data using deep generative models, Kjær E. T. S. & Anker A. S., et al., Digital Discovery (2023) (Front cover)

> Using generative adversarial networks to match experimental and simulated inelastic neutron scattering data, Anker A. S., et al., Digital Discovery (2023) (Front cover)

UNIVERSITY OF

16.05.2024

The challenge of structures not in the database DeepStruc UNIVERSITY OF OXFORD

 \geq Characterising the atomic structure of mono-metallic nanoparticles from x-ray scattering data using conditional generative models, Anker A. S. & Kjær E. T. S., et al., 16th international workshop on mining and learning with graphs under KDD2020 conference (2020)

DeepStruc: Towards structure solution from pair distribution function data using deep generative models, Kjær E. T. S. & Anker A. S., et al., Digital Discovery (2023) (Front cover) \geq

From point to probability Autoencoder

From point to probability Variational autoencoder

16.05.2024

DeepStruc **Training set**

 \geq Characterising the atomic structure of mono-metallic nanoparticles from x-ray scattering data using conditional generative models, Anker A. S. & Kjær E. T. S., et al., 16th international workshop on mining and learning with graphs under KDD2020 conference (2020)

DeepStruc: Towards structure solution from pair distribution function data using deep generative models, Kjær E. T. S. & Anker A. S., et al., Digital Discovery (2023) (Front cover) ۶

DeepStruc Training

> Characterising the atomic structure of mono-metallic nanoparticles from x-ray scattering data using conditional generative models, Anker A. S. & Kjær E. T. S., et al., 16th international workshop on mining and learning with graphs under KDD2020 conference (2020)

≻ DeepStruc: Towards structure solution from pair distribution function data using deep generative models, Kjær E. T. S. & Anker A. S., et al., Digital Discovery (2023) (Front cover)

DeepStruc Inference

- > Characterising the atomic structure of mono-metallic nanoparticles from x-ray scattering data using conditional generative models, Anker A. S. & Kjær E. T. S., et al., 16th international workshop on mining and learning with graphs under KDD2020 conference (2020)
- DeepStruc: Towards structure solution from pair distribution function data using deep generative models, Kjær E. T. S. & Anker A. S., et al., Digital Discovery (2023) (Front cover) ۶

DeepStruc Latent space

> Characterising the atomic structure of mono-metallic nanoparticles from x-ray scattering data using conditional generative models, Anker A. S. & Kjær E. T. S., et al., 16th international workshop on mining and learning with graphs under KDD2020 conference (2020)

DeepStruc: Towards structure solution from pair distribution function data using deep generative models, Kjær E. T. S. & Anker A. S., et al., Digital Discovery (2023) (Front cover) ۶

DeepStruc Reconstructions

- > Characterising the atomic structure of mono-metallic nanoparticles from x-ray scattering data using conditional generative models, Anker A. S. & Kjær E. T. S., et al., 16th international workshop on mining and learning with graphs under KDD2020 conference (2020)
- DeepStruc: Towards structure solution from pair distribution function data using deep generative models, Kjær E. T. S. & Anker A. S., et al., Digital Discovery (2023) (Front cover) ۶

DeepStruc Reconstructions

Mean squared error of atomic positions = 0.128 ± 0.073 Å

DeepStruc Experimental PDFs

DeepStruc

	DeepStruc	
	Welcome to DeepStruc that is a Deep Generative Model which has been trained to solve a mono-metallic structure (<200 atoms) based on a PDF!	
	Upload a PDF to use DeepStruc to predict the structure.	
	Upload PDF file in .gr format	
	Create and drop file here Browse files	
	Number of structures to generate	
	10 - +	
	Index of structure to visualize	
	3 - +	
	Standard deviation for sampling	
	3,00 - +	
	Generate structures	
	Cite	
	If you use DeepStruc, our code or results, please consider citing our papers. Thanks in advance!	
	DeepStruc: Towards structure solution from pair distribution function data using deep generative models 2023 (https://pubs.rs.org/en/content/articlehtml/2022/dd/d2d800085e)	
	Characterining the atomic structure of mono-metallic nanoparticles from x-ray scattering data using conditional generative models 2020 (https://chemraix.org/engage/chemraix/article: details/667.14dd.842.e653.4f2.db3227)	
	LICENSE	
	This project is licensed under the Apache License Version 2.0, January 2004 - see the LUCENSE file at https://github.com/femlSkaaning/DeepStrus/blob/main/LUCENSE.md for details.	
	Github	
	https://github.com/EmilSkaaning/DeepStruc	
	Questions	
	andy@chem.ku.dk or etsk@chem.ku.dk	
% speed		
vo sheen		

Characterising the atomic structure of mono-metallic nanoparticles from x-ray scattering data using conditional generative models, Anker A. S. & Kjær E. T. S., et al., 16th international workshop on mining and learning with graphs under KDD2020 conference (2020)

> DeepStruc: Towards structure solution from pair distribution function data using deep generative models, Kjær E. T. S. & Anker A. S., et al., Digital Discovery (2023) (Front cover) GitHub: https://github.com/EmilSkaaning/DeepStruc

Hugging Face: https://huggingface.co/spaces/AndySAnker/DeepStruc

Automated structure solution

16.05.2024

Machine learning challenges

> Machine Learning for Analysis of Experimental Scattering and Spectroscopy Data in Materials Chemistry, Anker S. A. et al., Chemical Science (2023)

> DeepStruc: Towards structure solution from pair distribution function data using deep generative models, Kjær E. T. S. & Anker A. S., et al., Digital Discovery (2023) (Front cover)

> Using generative adversarial networks to match experimental and simulated inelastic neutron scattering data, Anker A. S., et al., Digital Discovery (2023) (Front cover)

UNIVERSITY OF

DTU An Deep Learning model for identifying magnetic Hamiltonians

PCSMO is a half-doped manganite double perovskite The nature of the magnetism has been probed with inelastic neutron scattering Can a neural network infer the magnetic structure from the INS data?

DTU An Deep Learning model for identifying magnetic Hamiltonians

images

You Won't Believe What Obama Says In This Video! 🤢

Unpaired image-to-image translation Exp2SimGAN

> Using generative adversarial networks to match experimental and simulated inelastic neutron scattering data, Anker A. S., et al., Digital Discovery (2023) (Front cover)

Unpaired image-to-image translation Exp2SimGAN

Machine learning challenges

> Machine Learning for Analysis of Experimental Scattering and Spectroscopy Data in Materials Chemistry, Anker S. A. et al., Chemical Science (2023)

> DeepStruc: Towards structure solution from pair distribution function data using deep generative models, Kjær E. T. S. & Anker A. S., et al., Digital Discovery (2023) (Front cover)

> Using generative adversarial networks to match experimental and simulated inelastic neutron scattering data, Anker A. S., et al., Digital Discovery (2023) (Front cover)

UNIVERSITY OF

nordisk

fonden

novo

Acknowledgements

Emil T. S. Kjær

Kirsten M. Ø. Jensen University of Copenhagen

Marcus N. Weng

Raghavendra Selvan University of Copenhagen

Scientific Machine Learning Group

Jeyan Thiyagalingam

Science & Technology Facilities Council ISIS Neutron and Muon Source Manh Duc Le Toby Perring

Keith T. Butler University College London

Simon J. L. Billinge Columbia University

